首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2259篇
  免费   178篇
  2023年   26篇
  2022年   28篇
  2021年   86篇
  2020年   57篇
  2019年   81篇
  2018年   82篇
  2017年   75篇
  2016年   102篇
  2015年   146篇
  2014年   148篇
  2013年   179篇
  2012年   172篇
  2011年   176篇
  2010年   112篇
  2009年   89篇
  2008年   106篇
  2007年   105篇
  2006年   70篇
  2005年   72篇
  2004年   60篇
  2003年   51篇
  2002年   41篇
  2001年   33篇
  2000年   33篇
  1999年   33篇
  1998年   16篇
  1997年   16篇
  1996年   11篇
  1995年   13篇
  1994年   16篇
  1992年   16篇
  1991年   11篇
  1990年   16篇
  1989年   13篇
  1988年   10篇
  1987年   8篇
  1986年   5篇
  1985年   15篇
  1984年   12篇
  1982年   6篇
  1981年   9篇
  1980年   8篇
  1979年   13篇
  1978年   6篇
  1977年   7篇
  1975年   7篇
  1974年   4篇
  1973年   6篇
  1970年   3篇
  1968年   4篇
排序方式: 共有2437条查询结果,搜索用时 15 毫秒
991.
G-rich GT oligonucleotides with a different content of G clusters have been evaluated for their ability to exert cytotoxicity and to bind to nuclear-associated proteins in T-lymphoblast CCRF-CEM cells. Only the oligomers that did not form G-based structures or had a poor structure, under physiological conditions, were able to exert significant cellular growth inhibition effect. The cytotoxicity of these oligomers was related to their binding to the nuclear-associated eEF1A protein, but not to the recognition of nucleolin or other proteins. In particular, GT oligomers adopting a conformation compatible with G-quadruplex, did not exert cytotoxicity and did not bind to eEF1A. The overall results suggest that the ability of oligomers to adopt a G-quadruplex-type secondary structure in a physiological buffer containing 150 mM NaCl is not a prerequisite for antiproliferative effect in haematopoietic cancer cells. The cytotoxicity of G-rich GT oligomers was shown to be tightly related to their binding affinity for eEF1A protein.  相似文献   
992.
Human immunodeficiency virus type-1 integrase (HIV-1 IN) is an essential enzyme for effective viral replication. Flavone compounds have been very much studied due to their activity during the inhibition process of HIV-1 IN. In this study, we employed density functional theory (DFT) using the B3LYP hybrid functional to calculate a set of molecular properties for 32 flavonoid compounds with anti-HIV-1 IN activity. The stepwise discriminant analysis (SDA), principal component analysis (PCA) and hierarchical cluster analysis (HCA) methods were employed to reduce dimensionality and investigate possible relationship between the calculated properties and the anti-HIV-1 IN activity. These analyses showed that the molecular hydrophobicity (ClogP), charge on atom 11 and electrophilic index (omega) are responsible for the separation between anti-HIV-1 IN active and inactive compounds.  相似文献   
993.
Medicago truncatula has become a model system to study legume biology. It is imperative that detailed growth characteristics of the most commonly used cultivar, line A17 cv Jemalong, be documented. Such analysis creates a basis to analyze phenotypic alterations due to genetic lesions or environmental stress and is essential to characterize gene function and its relationship to morphological development. We have documented morphological development of M. truncatula to characterize its temporal developmental growth pattern; developed a numerical nomenclature coding system that identifies stages in morphological development; tested the coding system to identify phenotypic differences under phosphorus (P) and nitrogen (N) deprivation; and created visual models using the L-system formalism. The numerical nomenclature coding system, based on a series of defined growth units, represents incremental steps in morphological development. Included is a decimal component dividing growth units into nine substages. A measurement component helps distinguish alterations that may be missed by the coding system. Growth under N and P deprivation produced morphological alterations that were distinguishable using the coding system and its measurement component. N and P deprivation resulted in delayed leaf development and expansion, delayed axillary shoot emergence and elongation, decreased leaf and shoot size, and altered root growth. Timing and frequency of flower emergence in P-deprived plants was affected. This numerical coding system may be used as a standardized method to analyze phenotypic variation in M. truncatula due to nutrient stress, genetic lesions, or other factors and should allow valid growth comparisons across geographically distant laboratories.  相似文献   
994.
Legume rhizobia symbiotic nitrogen (N2) fixation plays a critical role in sustainable nitrogen management in agriculture and in the Earth's nitrogen cycle. Signaling between rhizobia and legumes initiates development of a unique plant organ, the root nodule, where bacteria undergo endocytosis and become surrounded by a plant membrane to form a symbiosome. Between this membrane and the encased bacteria exists a matrix-filled space (the symbiosome space) that is thought to contain a mixture of plant- and bacteria-derived proteins. Maintenance of the symbiosis state requires continuous communication between the plant and bacterial partners. Here, we show in the model legume Medicago truncatula that a novel family of six calmodulin-like proteins (CaMLs), expressed specifically in root nodules, are localized within the symbiosome space. All six nodule-specific CaML genes are clustered in the M. truncatula genome, along with two other nodule-specific genes, nodulin-22 and nodulin-25. Sequence comparisons and phylogenetic analysis suggest that an unequal recombination event occurred between nodulin-25 and a nearby calmodulin, which gave rise to the first CaML, and the gene family evolved by tandem duplication and divergence. The data provide striking evidence for the recruitment of a ubiquitous Ca(2+)-binding gene for symbiotic purposes.  相似文献   
995.
The participation of nitric oxide (NO) in the control of blood parasitemia and parasitism during the acute phase of infection in dogs inoculated with blood trypomastigotes (BT) or metacyclic trypomastigotes (MT group) of Berenice-78 Trypanosoma cruzi strain has been evaluated. Animals of the MT group (n = 4) presented increased levels of serum NO throughout the infection when compared with the BT (n = 4) or control (n = 4) groups, and a delay in parasitemia peak compared with the BT group. In spleen fragments, tissue parasitism was not observed but the MT group presented larger areas associated with inducible NO synthase (iNOS) in relation to BT and control groups. Heart fragments of MT-infected animals exhibited comparatively low tissue parasitism and high iNOS expression, while animals of the BT group presented high inflammatory infiltrate, high tissue parasitism and low iNOS expression. These results indicate that the source of inoculum can interfere with the development of the acute phase of Chagas disease, and may also trigger a distinct parasite-host interaction during this phase.  相似文献   
996.
Mitochondria are organelles of elaborate structure that in addition to supplying cellular energy, have significant roles in calcium homeostasis and apoptosis. Failure to maintain mitochondrial dynamics results in neurodegenerative diseases and neuromuscular pathologies. The Miro GTPases, which constitute a unique subgroup of the Ras superfamily, have emerged as essential regulators of mitochondrial morphogenesis and trafficking along microtubules. Miro GTPases function as calcium-dependent sensors in the control of mitochondrial motility. Increased awareness of the biological function of Miro GTPases can contribute to elucidate the molecular mechanisms underlying diseases caused by deregulated mitochondrial dynamics.  相似文献   
997.
In myrmecophytes, plants with structures in which ants establish colonies, there is strong competition among ant queens for access to host plants. However, our knowledge of how queens of different partner species interact when attempting to colonize plants remains limited. The Amazonian myrmecophyte Maieta guianensis is colonized by queens of two ant species: Crematogaster laevis and Pheidole minutula. We elucidated the competitive ranking of queens of these species and tested the hypothesis that cooperative colony founding (pleometrosis) by P. minutula queens could alter this ranking. We found that C. laevis queens are behaviorally dominant to P. minutula when individual queens encounter each other. Despite being inferior in combat, however, P. minutula queens successfully colonized seedlings at similar rates whether they were placed alone or in concert with a C. laevis queen. This may have occurred because the smaller P. minutula queens frequently entered domatia before the more robust C. laevis queens. Although C. laevis queens can evict P. minutula queens that had previously colonized domatia, this was an infrequent phenomenon—perhaps because while not fatal, conflicts often resulted in serious injury. Furthermore, by colonizing the same plant cooperative P. minutula queens dramatically reduce the probability that C. laevis colonizes host-plants without reducing their own per capita rates of colonization success. To our knowledge, this is a novel benefit of pleometrosis, whose primary advantages have primarily been thought to occur after the critical stage of colony establishment. Given the decreased likelihood of colonization when faced with multiple P. minutula, it may be that C. laevis’ persistence at the landscape level is enhanced by such factors as priority effects, superior dispersal ability, or niche partitioning.  相似文献   
998.
The present work aims to gain insights into the role of peptide-lipid interactions in the mechanisms of cellular internalization and endosomal escape of the S4(13)-PV cell-penetrating peptide, which has been successfully used in our laboratory as a nucleic acid delivery system. A S4(13)-PV analogue, S4(13)-PVscr, displaying a scrambled amino acid sequence, deficient cell internalization and drug delivery inability, was used in this study for comparative purposes. Differential scanning calorimetry, fluorescence polarization and X-ray diffraction at small and wide angles techniques showed that both peptides interacted with anionic membranes composed of phosphatidylglycerol or a mixture of this lipid with phosphatidylethanolamine, increasing the lipid order, shifting the phase transition to higher temperatures and raising the correlation length between the bilayers. However, S4(13)-PVscr, in contrast to the wild-type peptide, did not promote lipid domain segregation and induced the formation of an inverted hexagonal lipid phase instead of a cubic phase in the lipid systems assayed. Electron microscopy showed that, as opposed to S4(13)-PVscr, the wild-type peptide induced the formation of a non-lamellar organization in membranes of HeLa cells. We concluded that lateral phase separation and destabilization of membrane lamellar structure without compromising membrane integrity are on the basis of the lipid-driven and receptor-independent mechanism of cell entry of S4(13)-PV peptide. Overall, our results can contribute to a better understanding of the role of peptide-lipid interactions in the mechanisms of cell-penetrating peptide membrane translocation, helping in the future design of more efficient cell-penetrating peptide-based drug delivery systems.  相似文献   
999.
The complete mitochondrial DNA (mtDNA) genome of the Eunapius subterraneus (Porifera, Demospongiae), a unique stygobitic sponge, was analyzed and compared with previously published mitochondrial genomes from this group. The 24,850 bp long mtDNA genome is circular with the same gene composition as found in other metazoans. Intergenic regions (IGRs) comprise 24.7% of mtDNA and are abundant with direct and inverted repeats and palindromic elements as well as with open reading fames (ORFs) whose distribution and homology was compared with other available mt genomes with a special focus on freshwater sponges. Phylogenetic analyses based on concatenated amino acid sequences from 12 mt protein genes placed E. subterraneus in a well-supported monophyletic clade with the freshwater sponges, Ephydatia muelleri and Lubomirskia baicalensis. Our study showed high homology of mtDNA genomes among freshwater sponges, implying their recent split.  相似文献   
1000.
NMDA receptor (NMDAR) stimulation promotes neuronal survival during brain development. Cerebellar granule cells (CGCs) need NMDAR stimulation to survive and develop. These neurons differentiate and mature during its migration from the external granular layer to the internal granular layer, and lack of excitatory inputs triggers their apoptotic death. It is possible to mimic this process in vitro by culturing CGCs in low KCl concentrations (5 mm) in the presence or absence of NMDA. Using this experimental approach, we have obtained whole genome expression profiles after 3 and 8 h of NMDA addition to identify genes involved in NMDA-mediated survival of CGCs. One of the identified genes was Nurr1, a member of the orphan nuclear receptor subfamily Nr4a. Our results report a direct regulation of Nurr1 by CREB after NMDAR stimulation. ChIP assay confirmed CREB binding to Nurr1 promoter, whereas CREB shRNA blocked NMDA-mediated increase in Nurr1 expression. Moreover, we show that Nurr1 is important for NMDAR survival effect. We show that Nurr1 binds to Bdnf promoter IV and that silencing Nurr1 by shRNA leads to a decrease in brain-derived neurotrophic factor (BDNF) protein levels and a reduction of NMDA neuroprotective effect. Also, we report that Nurr1 and BDNF show a similar expression pattern during postnatal cerebellar development. Thus, we conclude that Nurr1 is a downstream target of CREB and that it is responsible for the NMDA-mediated increase in BDNF, which is necessary for the NMDA-mediated prosurvival effect on neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号